
Access AKDK Application Software with Femto Bolt
Access AKDK Application Software with Femto Bolt
1. Overview
Orbbec SDK K4A Wrapper is designed and encapsulated based on Orbbec SDK, converting Orbbec SDK to Azure
Kinect Sensor SDK interfaces. It mainly implements data stream reception, color parameter setting, D2C and point
cloud functions, recording and playback, consistent APIs with Azure Kinect Sensor SDK, allowing users to quickly
switch to Orbbec Femto Bolt and Orbbec Femto Mega cameras without modifying the application code.
Orbbec SDK K4A Wrapper open source link: https://github.com/orbbec/OrbbecSDK-K4A-Wrapper
The implementation principle of Orbbec SDK K4A Wrapper is as follows:
The characteristics of Orbbec SDK K4A Wrapper are as follows:

● Maintain the original interfaces of Azure Kinect Sensor SDK unchanged.
● Modify the implementation (impl) of Azure Kinect Sensor SDK C API, call Orbbec SDK internally to get video

frames and control Femto Bolt and Femto Mega cameras.
● Coordinate transformation, D2C, C2D, point cloud reuse Azure Kinect Sensor SDK.
Orbbec SDK K4A Wrapper currently supports the following cameras:
Orbbec Femto Bolt:
Win10 x86/x64, Ubuntu18.04 x64, Ubuntu20.04 x64
Orbbec Femto Mega:
Win10 x86/x64, Ubuntu20.04 x64
2. How AKDK applications switch to Orbbec SDK K4AWrapper

This chapter mainly shows how to implement code project switching and adaptation to Femto Bolt cameras by
replacing Azure Kinect Sensor SDK library files and header files with Orbbec SDK K4A Wrapper under the user
application code project.
For compiled application executables, you can also directly switch by replacing the libk4a library file linked by the
application executable with Orbbec SDK K4A Wrapper.
2.1 Windows Platform Application
2.1.1 Environment Configuration: Modify Registry
Due to the Windows system mechanism, for UVC protocol devices, if you need to get timestamp and other
metadata information, you need to register in the registry first. You can execute the obsensor_metadata_win10.ps1
script to complete automatic registration according to the obsensor_metadata_win10.md document guide.

2.1.2 Replace Header Files
Orbbec SDK K4A Wrapper is developed based on Azure Kinect Sensor SDK V1.4.1 version. The header files directly
use the original K4A library header files. If the user project originally used Azure Kinect Sensor SDK V1.4.1 version,
this step can be ignored.
● Find the header files in Orbbec SDK K4A Wrapper

● Replace the corresponding header files in Azure Kinect Sensor SDK

2.1.3 Replace Library Files
Compile
● First copy the k4a.lib and k4arecord.lib library files from the Orbbec SDK K4A Wrapper to the corresponding path of the Azure
Kinect Sensor SDK.

● Replace the corresponding k4a.lib and k4arecord.lib library files in the Azure Kinect Sensor SDK.

● Then, copy the dll file from Orbbec SDK K4AWrapper to the corresponding path in Azure Kinect Sensor SDK.

● Replace the corresponding dll in Azure Kinect Sensor SDK.

Run
Find k4a.dll, k4arecord.dll, OrbbecSDK.dll, depthengine_2_0.dll library files in Orbbec SDK K4A Wrapper

Copy the above library files to the original executable application path of Azure Kinect Sensor SDK, and replace the
original k4a.dll, k4arecord.dll, depthengine_2_0.dll library files to run the application program.

2.2 Linux Platform Application
2.2.1 Environment Configuration: Install udev rules Configuration
By default, Linux systems require root permissions for direct access to USB devices, which can be solved through
the rules configuration file. Orbbec SDK K4A Wrapper provides a 99-obsensor-libusb.rules configuration file and
install_udev_rules.sh installation script to complete the installation by executing the install_udev_rules.sh script.

Execution method:
sudo chmod +x ./install.sh # Make sure the installation script is executable
sudo ./install.sh # Execute the script with sudo
2.2.2 Replace Header Files
Orbbec SDK K4A Wrapper is developed based on Azure Kinect Sensor SDK V1.4.1 version. The header files directly
use the original K4A library header files. If the user project originally used Azure Kinect Sensor SDK V1.4.1 version,
this step can be ignored.
Find the original header files of Orbbec SDK K4A Wrapper and replace the corresponding header files under Azure
Kinect Sensor SDK.

2.2.3 Replace Library Files
Find the library files in Orbbec SDK K4A Wrapper, including: libdepthengine, libk4a, libk4arecord, libOrbbecSDK.so.

Copy the above library files to the /usr/lib/x86_64-linux-gnu directory to replace the Azure Kinect Sensor SDK
libraries to compile and use the application program with Orbbec SDK K4A Wrapper.

Note:
On Linux platforms, the depth engine library requires OpenGL. If the application layer also uses OpenGL and makes
cross-thread calls to OpenGL instances, context conflicts may occur, causing problems during depth engine
initialization and inability to start the depth data stream properly.

If the application layer uses OpenGL rendering, the application layer needs to switch the Context under OpenGL:
(https://www.khronos.org/opengl/wiki/OpenGL_and_multithreading)
The following is our solution using the glfw library:
a. Call glfwMakeContextCurrent(NULL) before starting the stream.
b. Then start the stream.
c. After the stream is finished, glfwMakeContextCurrent(currentContext).
// refer to github： file: tools/k4aviewer/k4adevicedockcontrol.cpp
GLFWwindow *currentContext = glfwGetCurrentContext(); // store the current context
glfwMakeContextCurrent(NULL); // make current context to NULL

StartCameras(); // will initialize the DepthEngine

glfwMakeContextCurrent(currentContext); // restore the current context
3. AKDK User Skeleton Algorithm Adaptation
The following uses the Azure Kinect Body Tracking SDK Sample as an example to describe how to obtain skeleton
data by using Orbbec Femto Bolt camera data after replacing Azure Kinect Sensor SDK through Azure Kinect Body
Tracking SDK (hereinafter referred to as K4ABT). (Users can switch by directly replacing the library files without
recompiling)
3.1 Windows Platform
3.1.1 Skeleton Installation Package Download and Installation
Complete the installation according to Microsoft's installation documentation:
https://learn.microsoft.com/en-us/azure/kinect-dk/body-sdk-setup
Download Azure Kinect Body Tracking SDK 1.1.2.msi, then execute the file to complete the installation.

3.1.2 Demonstrate Skeleton Algorithm Effects
Complete the environment configuration (metadata registration) according to Chapter 2, then replace the following
libraries of Azure kinect Sensor SDK in the installation directory with Orbbec SDK K4A Wrapper libraries (k4a.dll,
OrbbecSDK.dll, k4arecord.dll, depthengine_2_0.dll), then run simple_3d_viewer.exe with administrator rights.
The effect of the skeleton algorithm is as follows:

3.1.3 Skeleton Algorithm Secondary Development (sample compilation)
1. Download Azure Kinect Samples
URL: https://github.com/microsoft/Azure-Kinect-Samples
Clone code:
git clone https://github.com/microsoft/Azure-Kinect-Samples.git
2. Open Microsoft skeleton sample with Visual Studio
Microsoft skeleton sample only supports opening with visual studio. Use VS2019 to open the following projects.

3. Use Orbbec SDK K4A Wrapper header files and library files to replace Azure Kinect Sensor SDK header files and
library files.（k4a.dll, OrbbecSDK.dll, k4arecord.dll, depthengine_2_0.dll)。

a. Replace header files

b. Replace library files

4. Compile & Run
a. The simple_3d_viewer.exe example relies on the following 2 libraries, which are copied from the installation
package to the bin directory where the compiled application is generated.

b. Copy the dependent libraries to the running directory:

c. Compilation running interface:

3.2 Running Kinect Skeleton Algorithm on Linux
Since Microsoft Azure Kinect Sensor SDK libraries only provide installation on Ubuntu 18.04, it is recommended to
complete the following on Ubuntu 18.04 system.
3.2.1 Install Azure Kinect Sensor SDK
Refer to the Linux installation instructions section of Microsoft's installation documentation to complete the
installation. Document link:
Azure Kinect Sensor SDK download | Microsoft Learn
Installation instructions:
curl -sSL -O https://packages.microsoft.com/config/ubuntu/18.04/packages-microsoft-prod.deb
sudo dpkg -i packages-microsoft-prod.deb
rm packages-microsoft-prod.deb
sudo apt-get update
sudo apt-get install libk4a1.4-dev
sudo apt-get install k4a-tools
3.2.2 Install Azure Kinect Body Tracking SDK
Refer to the Linux installation instructions section of Microsoft's installation documentation to complete the
installation. Document link:
Azure Kinect Body Tracking SDK download | Microsoft Learn
The following instructions were executed during installation of Azure Kinect Sensor SDK and do not need to be
repeated:
curl -sSL -O https://packages.microsoft.com/config/ubuntu/18.04/packages-microsoft-prod.deb
sudo dpkg -i packages-microsoft-prod.deb
rm packages-microsoft-prod.deb
sudo apt-get update
Install libk4abt:
sudo apt install libk4abt1.1-dev

3.2.3 Use Orbbec SDK K4AWrapper to Replace Azure Kinect Sensor SDK Library
Complete the environment configuration (udev rules script installation) according to Chapter 2, then replace the
Azure Kinect Sensor SDK library files with the library files in the Orbbec SDK K4A Wrapper package (libk4a.so,
libOrbbecSDK.so, depthengine2). After replacing and connecting the Orbbec camera, enter the simple_3d_viewer
command in the terminal to see the following running effect:

4. Differences between Orbbec SDK K4AWrapper and Azure Kinect Sensor SDK
1. Functional points with differences

No. Function Point Orbbec SDK K4A
Wrapper

Azure Kinect Sensor SDK Impact on
Application

1 Recording c++ typedef struct
_k4a_record_configuration_t
{ /** * The timestamp offset of
the start of the recording. All
recorded timestamps are
offset by this value such that *

c++ typedef struct
_k4a_record_configuration_t
{ /** * The timestamp offset of
the start of the recording. All
recorded timestamps are
offset by this value such that *

Need to replace
and recompile
the header file of
Orbbec SDK K4a
Wrapper

the recording starts at
timestamp 0. This value can be
used to synchronize
timestamps between 2
recording files. */ uint64_t
start_timestamp_offset_usec; }
k4a_record_configuration_t;

the recording starts at
timestamp 0. This value can be
used to synchronize
timestamps between 2
recording files. */ uint32_t
start_timestamp_offset_usec; }
k4a_record_configuration_t;

2. Unimplemented interfaces in Orbbec SDK K4A Wrapper (return empty value or exception state)
No. Azure Kinect Sensor SDK Interface

Meaning
Impact of Differences

1 c++ k4a_result_t
k4a_set_allocator(k4a_memory_allocate_cb_t
allocate, k4a_memory_destroy_cb_t free)
Pass in external user-defined memory
manager for SDK internal memory
application

User cannot use their custom
memory manager for SDK
internal use. Basic functioning
of SDK itself is barely affected.

2 c++ void
k4a_capture_set_temperature_c(k4a_capture_t
capture_handle, float temperature_c)
Set temperature information for
capture

User cannot modify this value,
impacting storage of custom
values

3 c++ float
k4a_capture_get_temperature_c(k4a_capture_t
capture_handle)
Get temperature information for
capture

User cannot get this value,
impacting algorithms or
applications that rely on this
value

4 c++ void
k4a_image_set_exposure_usec(k4a_image_t
image_handle, uint64_t exposure_usec)
Set exposure value for image

User cannot modify this value,
impacting storage of custom
values

5 c++ void
k4a_image_set_white_balance(k4a_image_t
image_handle, uint32_t white_balance)
Set white balance value for image

6 c++ void
k4a_image_set_iso_speed(k4a_image_t
image_handle, uint32_t iso_speed)
Set ISO speed for image

7 c++ uint64_t
k4a_image_get_exposure_usec(k4a_image_t
image_handle)
Get exposure value for image

User cannot get this value,
impacting algorithms or
applications that rely on this
value

8 c++ uint32_t
k4a_image_get_white_balance(k4a_image_t
image_handle)
Get white balance value for image

9 c++ uint32_t
k4a_image_get_iso_speed(k4a_image_t
image_handle)
Read ISO speed for image

10 c++ k4a_result_t
k4a_device_get_sync_jack(k4a_device_t
device_handle, bool *sync_in_jack_connected,

User application cannot rely
on this interface to determine

bool *sync_out_jack_connected)
Get sync cable connection status for
device

multi-camera sync cable
linkage status

	Access AKDK Application Software with Femto Bolt
	●Replace the corresponding k4a.lib and k4arecord.li
	●Then, copy the dll file from Orbbec SDK K4A Wrappe
	●Replace the corresponding dll in Azure Kinect Sens

